Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Electronics (Switzerland) ; 11(5), 2022.
Article in English | Scopus | ID: covidwho-1731979

ABSTRACT

The recent COVID-19 pandemic has shown that there is a substantial need for high-precision reliable diagnostic tests able to detect extremely low virus concentrations nearly instantaneously. Since conventional methods are fairly limited, there is a need for an alternative method such as THz spectroscopy with the utilization of THz metamaterials. This paper proposes a method for sensitivity characterization, which is demonstrated on two chosen multi-band THz metamaterial sensors and samples of three different subtypes of the influenza A virus. Sensor models have been simulated in WIPL-D software in order to analyze their sensitivity both graphically and numerically around all resonant peaks in the presence of virus samples. The sensor with a sandwiched structure is shown to be more suitable for detecting extremely thin virus layers. The distribution of the electric field for this sensor suggests a possibility of controlling the two resonant modes independently. The sensor with cross-shaped patches achieves significantly better Q-factors and refractive sensitivities for both resonant peaks. The reasoning can be found in the wave–sample interaction enhancement due to the better electromagnetic field confinement. A high Q-factor of around 400 at the second resonant frequency makes the sensor with cross-shaped patches a promising candidate for potential applications in THz sensing. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

SELECTION OF CITATIONS
SEARCH DETAIL